Blueberry Disease Management Review

Kerik D. Cox Cornell AgriTech

Plant Pathology and Plant-Microbe Biology Section School of Integrative Plant Science

Cornell University

New York State Agricultural Experiment Station

Key Diseases of Blueberries

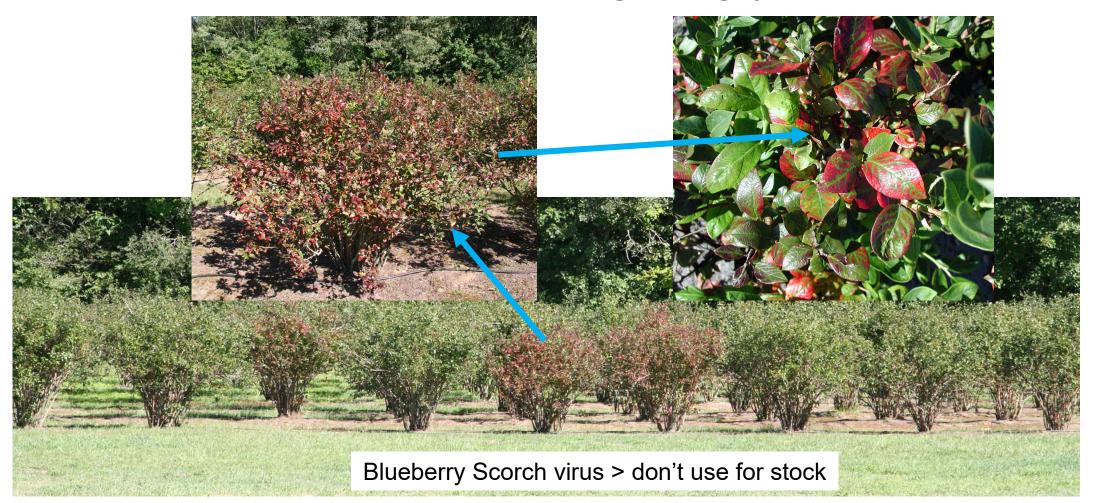
Blueberry Fungicide Evaluations

Key Diseases of Blueberries

Blueberry Fungicide Evaluations

Management Principles: Avoidance

- Avoidance: implement practices that help avoid disease
 - Select & prepare site to avoid pathogen presence, and minimize environmental factors favoring pathogen presence
 - -Keep weeds out of the planting site (harbor inoculum)


Management Principles: Avoidance

- Avoid: cultural practices that favor development of disease
 - Avoid overhead irrigation or excessive watering
 - Avoid excessive nitrogen fertilization
 - Succulent tissues encourage fruit rots, powdery mildews
 - Dense foliage/fruit clusters increase drying times & allow for fungal infection

Management Principles: Avoidance

Avoid: practices like propagating your own plants

Managing Diseases (principles)

- Avoid: sources of disease
 - Prevent pathogen introduction by using certified disease-free planting stock (usually for viruses)

Management Principles: Protection

- **Protect:** optimize plant or pot spacing to ensure good air circulation (drying of fruit, flowers, and leaves)
- Remove old plant material, prune, or weeds to increase air circulation – air protects against disease?

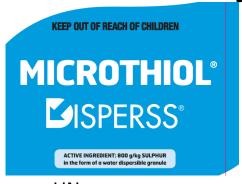
Excellent spacing and weed management

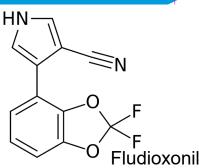
Needing Pruning and weed management

Management Principles: Eradication

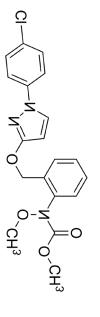
- Eradicate (pathogen destruction):
 - -Sanitation: remove & destroy infected fruit or plants, leaf litter, and dead plant material

-Reduce inoculum & spread of disease


Biochemical management: (inc. fungicides)


- Protect plants from pathogen infection using biochemical agents
- Eradicate
 pathogens to stop
 disease & prevent
 invasion/symptom
 development

Biochemical management: (inc. fungicides)


- Protect plants from pathogen infection using biochemical agents
- Eradicate pathogens to stop disease & prevent invasion/symptom development

Pyraclostrobin

Principles of Disease Management

Key Diseases of Blueberries

Blueberry Fungicide Evaluations

Phomopsis Canker

(Early bloom to dormancy)

- Pathogen: Phomopsis vaccinii
- Symptoms Twig blight
 - Rapid wilt and death of shoots (flagging)
 - Spreading reddish/brown lesions (tip to

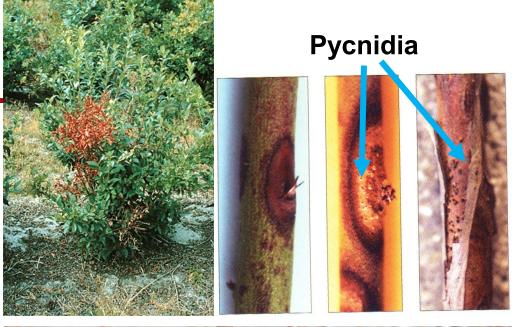
base)

Phomopsis Canker

(Early bloom to dormancy)

- Pathogen: Phomopsis vaccinii
 - -Canker
 - Flattened/sunken discolored area at base of canes
 - Leaf spot & fruit rot
 - Mycelium (mold) present & Fruit burst

easily



(Early bloom to dormancy)

- Fusicoccum putrefaciens
- Symptoms
 - Cane/shoot blight: Rapid wilt and death (flagging)
 - -Cankers
 - Reddish/violet-brown lesions at round infected buds (bull's-eye appearance)
 - Expand yearly until girdling cane
 - Filled with tiny black pycnidia

Botryosphaeria Canker/Blight

(Early bloom to dormancy)

- Botryosphaeria corticis & B. dothidea
- Symptoms (late spring)
 - -Flagging of shoots

–Stem blight: yellow > reddening > dry > blight of shoots

Botryosphaeria Canker/Blight

- Botryosphaeria corticis
 & B. dothidea
- Symptoms (late spring)
 - –Stem cankers: small red lesions on young tissue > lead to Large, dark deeply-cracked cankers
 - -Infected wood browntan on one side of stem

All Canker Diseases

- Management options
 - Prune and destroy infected and old growth
 - -Remove dead canes to the crown
 - –Avoid sites prone to spring frost
 - -Fungicide applications
 - Delayed dormant application of copper/sulfur to reduce inoculum
 - Second sulfur application if high disease pressure last season

ACTIVE INGREDIENT: 800 g/kg SULPHUR in the form of a water dispersible granule

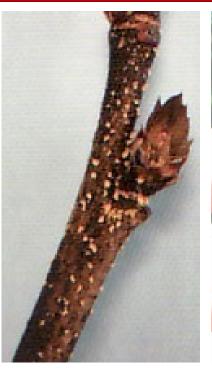
Mummy berry

- Pathogen: Monilinia vaccinii-corymbosi
- Symptoms Shoot infection:
 - -Early green tip to shoot expansion
 - -Rapid blight of leaf clusters (strikes)
- Flower/fruit infection
 - -Green fruit: white mycelium in locules
 - Mature fruit: grey to pinkish-tan rigid, but rubbery
 - Mummies (pseudosclerotia): Black spongy pumpkin-shaped fungal structures

Green fruit > Mature mummies

Mummy berry

- Management options
 - Remove and destroy mummies & ground cover like moss
 - –Fungicide green tip to petal fall
 - Applications of single-site fungicides to protect shoot & flowers
 - Sulfur and copper not effective > some biopesticides are effective


Mummy berry

- Management options
 - Mulch planting over ground cover after mummy removal
 - Shallow cultivation between and under bushes at bud break
 - Cultivars w/ different flowering can escape infection

Anthracnose

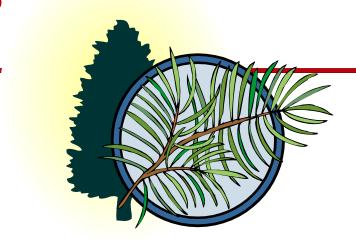
- Pathogen: Colletotrichum sp.
- Symptoms
 - Cane and twig infection
 - Reddish brown lesions at buds
 - May girdle shoots
 - Severe infection → cane death
 - -Fruit rot
 - Often latent infection (at bloom)
 - Sunken lesions & salmoncolored sporulation → appears during harvest

Anthracnose

- Management:
 - Use anthracnose free planting stock
 - Remove and destroy infected shoots
 - Promote air circulation to dry plants: Control weeds & widen plant spacing: Prune for an open canopy

Anthracnose

- Management:
 - -Fungicideapplications
 - Sulfur: at bud break reduce spore inoculum
 - Single-site fungicides: bloom through harvest during warm wet weather


Blueberry Brooms

- Pucciniastrum goeppertianum
- Symptoms: numerous small swollen shoots emerging from lateral buds (broom-like)
- Impacts: Rare in NY & damage negligible unless infection severe

Blueberry Brooms

- Disease cycle
 - -Survival : overwinters on fir trees (*Abies* sp.)
 - Infection: sporulation on fir needles infects blueberry
- Management options
 - Eliminate firs near planting (300m)
 - Eliminate infected blueberries

Key Diseases of Blueberries

Blueberry Fungicide Evaluations

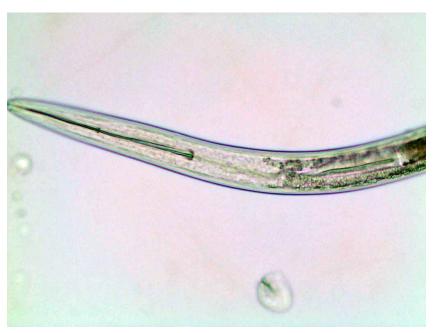
Viruses

- Viruses: abiotic infectious particles: nucleic acids and proteins that disrupt cellular physiology
- Virus problems look similar to subtle horticultural problems

Viruses

- Virus infection upsets the plant physiology like a nutrient deficiency or toxicity
- Virus infections can be asymptomatic for many years until titers build sufficiently
- Asymptomatic infections are transmissible

Tobacco and Tomato ringspot virus (ToRSV & TRSV)


- Symptoms: asymptomatic with consequences, and malformed leaves with chlorotic & necrotic spots
- It may take more than 10 years before symptoms become apparent
- Consequences: poor growth, poor or absent fruit production, plant death

Tobacco and Tomato ringspot virus (ToRSV & TRSV)

- Vector: Dagger nematode
 - Thrives in sandier soils & doesn't move far (in./season)
 - Numerous weeds can host the nematode – widely distributed throughout a planting
- Management
 - Should remove and replant elsewhere with healthy stock
 - Plant to non-host or leave fallow

Blueberry Scorch Virus (BIScV)

- Symptoms: Blight and necrosis of developing leaves and flowers during bloom (start brown, bleach gray)
- May look like frost injury and may kill young twigs
- Cultivar-specific chlorosis and marginal reddening patterns


Blueberry Scorch Virus (BIScV)

- Consequences: poor growth, poor or absent fruit production, plant death
- Vector: Aphids
 - Quickly move throughout a planting, and to neighboring fields
 - Not more than 0.5 miles

Blueberry Shock Ilarvirus (BIShV)

- Blight of flowers and developing leaves during bloom
- Second flush of growth in the summer and bushes look normal, but have no fruit
- Have symptoms for only 1-4 years and then infections become quiescent

Blueberry Shock Ilarvirus (BIShV)

- Consequences: Bushes lose productivity, but can recover w/ good yields with nutrition
- Vector: Transmitted in pollen spread by bees.
 - Can quickly spread within a field and to neighboring fields
 - Quiescent infections are still transmissible

Distinguishing viruses from other problems

- Number of shoots and leaves expressing virus-like symptoms (when symptomatic, virus symptoms often systemic)
 - Don't be alarmed by a few crumbly berries, or oddly chlorotic leaves on a cane or bush
- 2. Intensity of virus-like symptoms
 - Although infected plants can be asymptomatic, poor fruit production, or lack thereof is not reason to suspect a virus

Distinguishing viruses from other problems

3. Timing of symptom appearance

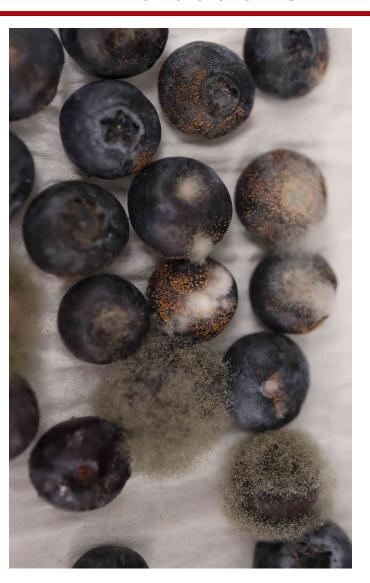
- Virus tissue titers during peak biomass production in spring virus symptoms most apparent in spring
- Sudden appearance of bizarre symptoms end of the summer during the beginning of senescence - not likely a virus

4. Symptom distribution

- Usually patchy distributions due to restricted movement and habitation patterns of the virus vector
- Varieties vary in susceptibility and symptom expression Uniform distribution across blocks and varieties are likely abiotic causes (like nutrition)

How to avoid and get rid of viruses

- No chemical controls for viruses best defense = avoid viruses
- Can scout and treat for vectors (aphids & nematodes)
- Purchase planting material from established nurseries with certification programs
- Once a plant has a virus it has it for life!
 - Don't just remove the symptomatic plants
 - Neighboring plants = infected, but asymptomatic
 - Important to remove the entire block or planting


Principles of Disease Management

Key Diseases of Blueberries

Blueberry Fungicide Evaluations

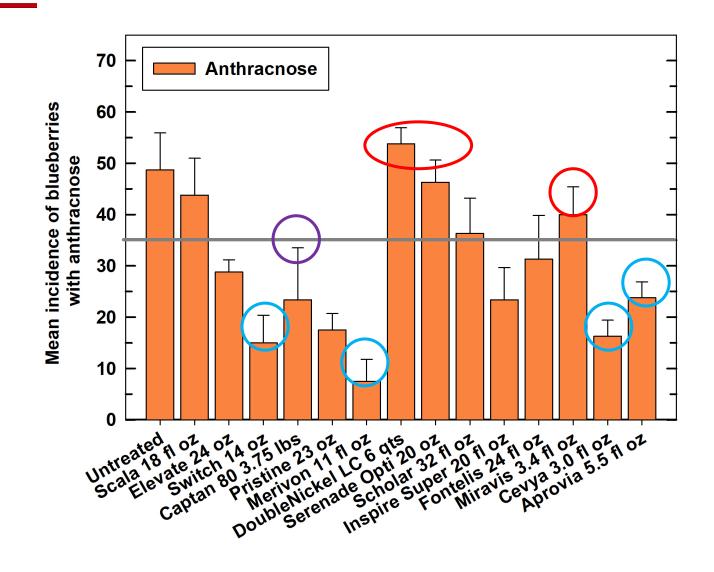
Pre/post-harvest fruit rot trials

 'Blueray' blueberries are treated with fungicides at harvest maturity in replicated plots

Product Evaluated	Rate	Fungicide or Biopesticide active ingredient	FRAC Group	Manufacturer
Scala SC	18 fl. oz./A	Pyrimethanil	9	Bayer CropScience
Elevate WG	24 oz./A	Fenhexamid	17	Arysta LifeScience
Switch	14 oz./A	Cyprodinil + Fludioxonil	9 + 12	Syngenta
Captan Gold 80 WDG	3.75 lb./A	Captan	M4	ADAMA
Organic JMS Stylet-Oil	9 qts./A	White Mineral Oil	NA	JMS Flower Farms
Pristine	23 oz./A	Pyraclostrobin + Boscalid	11 + 7	BASF
Merivon	11 fl. oz./A	Pyraclostrobin + Fluxapyroxad	11 + 7	BASF
DoubleNickel LC	6 qts./A	Bacillus amyloliquefaciens	NA	Certis USA
Serenade Opti	20 oz./A	Bac. subtilis QST 713	NA	Bayer CropScience
Scholar	32 fl oz./A	Fludioxonil	12	Syngenta
Inspire Super	20 fl. oz./A	Difenoconazole + Cyprodinil	3 + 9	Syngenta
Fontelis	24 fl. oz./A	Penthiopyrad	7	DuPont Crop Protection
Miravis	3.4 fl. oz./A	Pydiflumetofen	7	Syngenta
Cevya	3.0 fl. oz./A	Mefentrifluconazole	3	BASF
Aprovia	5.5 fl. oz./A	Benzovindiflupyr	7	Syngenta

Pre/post-harvest fruit rot trials

- 'Blueray' blueberries are treated with fungicides at harvest maturity in replicated plots
- Inoculated harvested fruit rot pathogens & incubated at room temperature until rot begins in untreated fruit

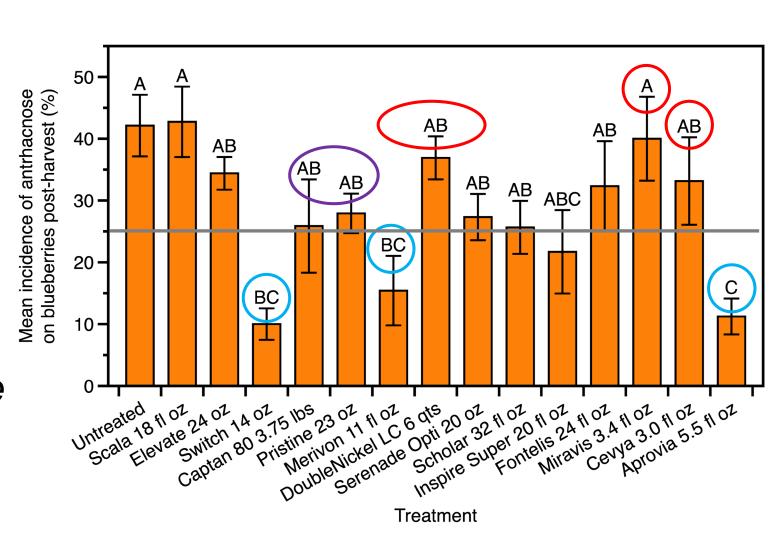


Pre/post-harvest fruit rot trials: Anth 2021

Effective: Merivon,
 Switch, Cevya, Aprovia

 Less effective: Captan, Miravis, Biopesticides

Test using C. fioriniae

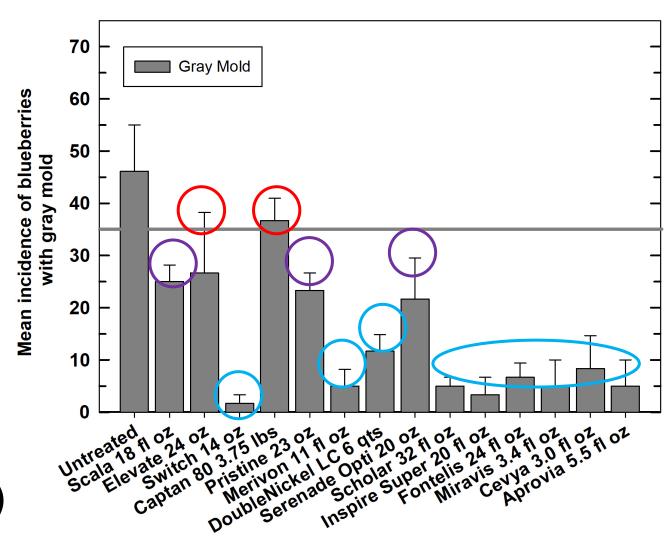


Pre/post-harvest fruit rot trials: Anth 2022

Effective: Merivon,
 Switch, Cevya, Aprovia

 Less effective: Captan, Miravis, Biopesticides

• Test NY C. nymphaeae

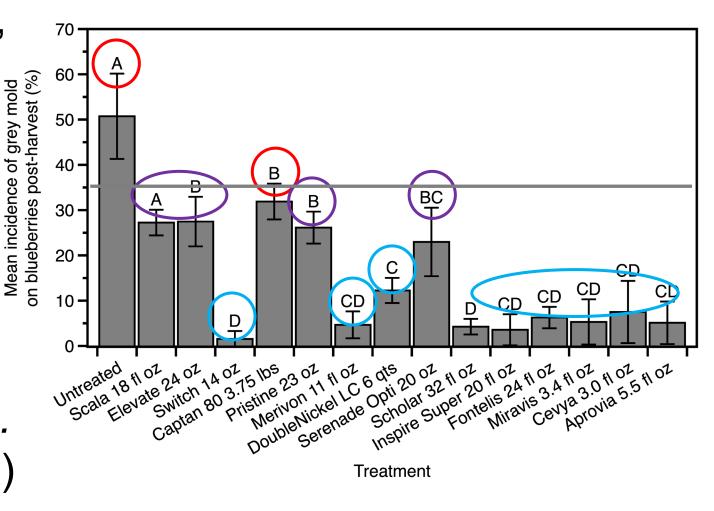


Pre/post-harvest fruit rot trials Bot 2021

 Effective: Merivon, Switch, Biopesticides, Cevya, Aprovia, all group 7

 Less effective: Captan and Elevate

 Test using Qol-resistant B. cinerea (Group 7+11 work)

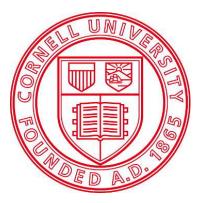


Pre/post-harvest fruit rot trials Bot 2022

Effective: Merivon, Switch,
 Biopesticides, Cevya,
 Aprovia, all group 7

Less effective: Captan,
 Pristine, Scala, & Elevate

 Test using Qol-resistant B. cinerea (Group 7+11 work)


Summary points for fruit rot trials

- Fungicides differ infectiveness to different species of Colletotrichum:
- Protectants like captan (sustainability issues) not appreciably effective
- Many single-sites effective against gray mold: Pristine not able to overcome Qol resistance in test isolate, but Merivon can
- Switch, Merivon, Aprovia Ceyva all around effective singlesite
- Biopesticides need a boost: forecasting & protected agriculture

Acknowledgments

Program research funded by

Cornell AgriTech

New York State Agricultural Experiment Station Cox Lab Members
Alexandra
Davidson
Isabella Yannuzzi
Andrew Painton
Mary Cowser
McKenzie Schessl

